Modulation Instability Continuous Wave Nls Dark

Abstract

In this paper, rogue wave solutions of a sixth-order focusing nonlinear Schrödinger (NLS) equation with variable coefficients are investigated on a periodic background. To get the results, we take advantage of Darboux transformation approach and the nonlinearization of spectral problem and we firstly find one kind of rogue wave solution that evolves periodically with time on a periodically spatial background. Besides, we also find this kind of rogue wave solution dissipates over time. Modulation instability (MI) of the sixth-order focusing NLS equation with variable coefficients is also studied.

Data availability

The authors declare that all data supporting the findings of this study are available within the article.

References

  1. Benjamin, T.B.: The disintegration of wave trains on deep water. J. Fluid Mech. 27, 417–430 (1967)

    MATH  Google Scholar

  2. Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B 237, 37–72 (1952)

    MathSciNet  MATH  Google Scholar

  3. Zakharov, V.E.: Collapse of Langmuir waves. Sov. Phys. JETP 35, 908–914 (1972)

    Google Scholar

  4. Hasegawa, A.: Generation of a train of soliton pulses by induced modulational instability in optical fibers. Opt. Lett. 9(7), 288–290 (1984)

    Google Scholar

  5. Tai, K., Hasegawa, A., Tomita, A.: Observation of modulational instability in optical fibers. Phys. Rev. Lett. 56(2), 135–138 (1986)

    Google Scholar

  6. Agrawal, G.P.: Modulation instability induced by cross-phase modulation. Phys. Rev. Lett. 59(8), 880–883 (1987)

    Google Scholar

  7. Akhmediev, N., Korneev, V.I.: Modulation instability and periodic solutions of the nonlinear Schrödinger equation. Theor. Math. Phys. 69(2), 189–194 (1986)

    MATH  Google Scholar

  8. Islas, A., Schober, C.M.: Rogue waves, dissipation, and downshifting. Phys. D 240(12), 1041–1054 (2011)

    MATH  Google Scholar

  9. Onorato, M., Proment, D.: Approximate rogue wave solutions of the forced and damped nonlinear Schrödinger equation for water waves. Phys. Lett. A 376(45), 3057–3059 (2012)

    Google Scholar

  10. Schober, C.M., Strawn, M.: The effects of wind and nonlinear damping on rogue waves and permanent downshift. Phys. D 313(1), 81–98 (2015)

    MathSciNet  MATH  Google Scholar

  11. Kharif, C., Pelinovsky, D.E., Slunyaev, A.: Rogue Waves in the Ocean. Springer, Berlin (2009)

    MATH  Google Scholar

  12. Solli, D.R., Ropers, C., Koonath, P., Jalali, B.: Optical rogue waves. Nature 450(7172), 1054–1057 (2007)

    Google Scholar

  13. Bludov, Y.V., Konotop, V.V., Akhmediev, N.: Matter rogue waves. Phys. Rev. A 80(3), 033610 (2009)

    Google Scholar

  14. Bludov, Y.V., Konotop, V.V., Akhmediev, N.: Rogue waves as spatial energy concentrators in arrays of nonlinear waveguides. Opt. Lett. 34(19), 3015–3017 (2009)

    Google Scholar

  15. Akhmediev, N., Ankiewicz, A., Taki, M.: Waves that appear from nowhere and disappear without a trace. Phys. Lett. A 373, 675–678 (2009)

    MATH  Google Scholar

  16. Peregrine, D.H.: Water waves, nonlinear Schrödinger equations and their solutions. J. Aust. Math. Soc. 25(1), 16–43 (1983)

    MATH  Google Scholar

  17. Cao, C.W.: Nonlinearization of the Lax system for AKNS hierarchy. Sci. China Ser. A 33(5), 528–536 (1990)

    MathSciNet  MATH  Google Scholar

  18. Wen, X.Y., Meng, X.H., Xu, X.G., Wang, J.T.: N-fold Darboux transformation and explicit solutions in terms of the determinant for the three-field Blaszak–Marciniak lattice. Appl. Math. Lett. 26(11), 1076–1081 (2013)

    MathSciNet  MATH  Google Scholar

  19. Zhaqilao, Sirendaoreji: N-soliton solutions of the KdV6 and mKdV6 equations (Article). J. Math. Phys. 51(11), 073516 (2010)

    MATH  Google Scholar

  20. Zhaqilao: Darboux transformation and N-soliton solutions for a more general set of coupled integrable dispersionless system. Commun. Nonlinear Sci. Numer. Simul. 16(10), 3949–3955 (2011)

    MathSciNet  MATH  Google Scholar

  21. Zhaqilao, Qiao, Z.: Darboux transformation and explicit solutions for two integrable equations. Math. Anal. Appl. 380(2), 794–806 (2011)

    MathSciNet  MATH  Google Scholar

  22. Zhao, D., Zhaqilao: On two new types of modified short pulse equation. Nonlinear Dyn. 100(1), 615–627 (2020)

    MATH  Google Scholar

  23. Chen, J.B., Pelinovsky, D.E.: Rogue periodic waves of the modified KdV equation. Nonlinearity 31(5), 1955–1980 (2018)

    MathSciNet  MATH  Google Scholar

  24. Chen, J.B., Pelinovsky, D.E.: Rogue periodic waves of the focusing nonlinear Schrödinger equation. Proc. R. Soc. A 474(2210), 20170814 (2018)

    MATH  Google Scholar

  25. Chen, J.B., Pelinovsky, D.E., White, R.E.: Rogue waves on the double-periodic background in the focusing nonlinear Schrödinger equation. Phys. Rev. E 100(5), 0522199 (2019)

    Google Scholar

  26. Chen, J.B., Pelinovsky, D.E., White, R.E.: Periodic standing waves in the focusing nonlinear Schrödinger equation: Rogue waves and modulation instability. Physica D. 405, 132378 (2020)

    MathSciNet  MATH  Google Scholar

  27. Wang, Z.J., Zhaqilao: Rogue wave solutions for the generalized fifth-order nonlinear Schrödinger equation on the periodic background. Wave Motion 108, 102839 (2021)

    MATH  Google Scholar

  28. Yue, Y.F., Huang, L.L., Chen, Y.: Modulation instability, rogue waves and spectral analysis for the sixth-order nonlinear Schrödinger equation. Commun. Nonlinear Sci. Numer. Simul. 89, 105284 (2020)

    MathSciNet  MATH  Google Scholar

  29. Zhang, H.Q., Chen, F.: Rogue waves for the fourth-order nonlinear Schrödinger equation on the periodic background. Chaos 31(2), 203129 (2021)

    Google Scholar

  30. Peng, W.Q., Tian, S.F., Wang, X.B., Zhang, T.T.: Characteristics of rogue waves on a periodic background for the Hirota equation. Wave Motion 93, 102454 (2020)

    MathSciNet  MATH  Google Scholar

  31. Li, R.M., Geng, X.G.: Rogue periodic waves of the sine-Gordon equation. Appl. Math. Lett. 102, 106147 (2020)

    MathSciNet  MATH  Google Scholar

  32. Zhang, H.Q., Gao, X., Pei, Z.J., Chen, F.: Rogue periodic waves in the fifth-order Ito equation. Appl. Math. Lett. 107, 106464 (2020)

    MathSciNet  MATH  Google Scholar

  33. Sun, W.R., Wang, L.: Vector rogue waves, rogue wave-to-soliton conversions and modulation instability of the higher-order matrix nonlinear Schrödinger equation. Eur. Phys. J. Plus. 133(12), 495 (2018)

    Google Scholar

  34. Kedziora, D.J., Ankiewicz, A., Chowdury, A., Akhmediev, N.: Integrable equations of the infinite nonlinear schrödinger equation hierarchy with time variable coefficients. Chaos 25, 103114 (2015)

    MathSciNet  MATH  Google Scholar

  35. Ankiewicz, A., Kedziora, D.J., Chowdury, A., Bandelow, U., Akhmediev, N.: Infinite hierarchy of nonlinear Schrödinger equations and their solutions. Phys. Rev. E 93, 012206 (2016)

    MathSciNet  Google Scholar

  36. Anastasia, D., Iain, F., Spyridoula, S.: Non-commutative NLS-type hierarchies: dressing & solutions. Nucl. Phys. B 941(4), 376–400 (2019)

    MathSciNet  MATH  Google Scholar

  37. Hirota, R.: Exact envelope-soliton solutions of a nonlinear wave equation. J. Math. Phys. 14, 805–809 (1973)

    MathSciNet  MATH  Google Scholar

  38. Lakshmanan, M., Porsezian, K., Daniel, M.: Effect of discreteness on the continuum limit of the Heisenberg spin chain. Phys. Lett. A 133, 483–488 (1988)

    Google Scholar

  39. Chowdury, A., Kedziora, D.J., Ankiewicz, A., Akhmediev, N.: Soliton solutions of an integrable nonlinear Schrödinger equation with quintic terms. Phys. Rev. E 90, 032922 (2014)

    Google Scholar

  40. Akhmediev, N., Ankiewicz, A.: Solitons, Nonlinear Pulses and Beams. Chapman & Hall, London (1997)

    MATH  Google Scholar

  41. Ankiewicz, A., Soto-Crespo, J.M., Akhmediev, N.: Rogue waves and rational solutions of the Hirota equation. Phys. Rev. E 81, 046602 (2010)

    MathSciNet  Google Scholar

  42. Cao, C.W., Wu, Y.T., Geng, X.G.: Relation between the Kadomtsev–Petviashvili equation and the confocal involutive system. J. Math. Phys. 40(8), 3948–3970 (1999)

    MathSciNet  MATH  Google Scholar

  43. Zhou, R.G.: Nonlinearizations of spectral problems of the nonlinear Schrödinger equation and the real-valued modified Korteweg–de Vries equation. J. Math. Phys. 48(1), 013510 (2007)

    MathSciNet  MATH  Google Scholar

  44. Gu, C.H., Hu, H.S., Zhou, Z.X.: Darboux Transformation in Integrable Systems: Theory and Their Applications To Geometry. Springer, Dordrecht (2005)

    MATH  Google Scholar

  45. Kharif, C., Touboul, J.: Under which conditions the Benjamin–Feir instability may spawn an extreme wave event: a fully nonlinear approach. Eur. Phys. J. Special Topics 185, 159–168 (2010)

    Google Scholar

  46. Kharif, C., Kraenkel, R.A., Manna, M.A., Thomas, R.: The modulational instability in deep water under the action of wind and dissipation. J. Fluid Mech. 664, 138–149 (2010)

    MathSciNet  MATH  Google Scholar

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 11861050, 11261037), the Natural Science Foundation of Inner Mongolia Autonomous Region, China (Grant No. 2020LH01010) and the Inner Mongolia Normal University Graduate Students' Research and Innovation Fund (Grant No. CXJJS21119).

Author information

Authors and Affiliations

Corresponding author

Correspondence to Zhaqilao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shi, W., Zhaqilao Modulation instability and rogue waves for the sixth-order nonlinear Schrödinger equation with variable coefficients on a periodic background. Nonlinear Dyn 109, 2979–2995 (2022). https://doi.org/10.1007/s11071-022-07538-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI : https://doi.org/10.1007/s11071-022-07538-9

Keywords

  • Rogue wave on a periodic background
  • Sixth-order focusing nonlinear Schrödinger equation
  • Variable coefficient
  • Modulation instability

piersonlitsee1990.blogspot.com

Source: https://link.springer.com/article/10.1007/s11071-022-07538-9

0 Response to "Modulation Instability Continuous Wave Nls Dark"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel