Modulation Instability Continuous Wave Nls Dark
Abstract
In this paper, rogue wave solutions of a sixth-order focusing nonlinear Schrödinger (NLS) equation with variable coefficients are investigated on a periodic background. To get the results, we take advantage of Darboux transformation approach and the nonlinearization of spectral problem and we firstly find one kind of rogue wave solution that evolves periodically with time on a periodically spatial background. Besides, we also find this kind of rogue wave solution dissipates over time. Modulation instability (MI) of the sixth-order focusing NLS equation with variable coefficients is also studied.
Data availability
The authors declare that all data supporting the findings of this study are available within the article.
References
-
Benjamin, T.B.: The disintegration of wave trains on deep water. J. Fluid Mech. 27, 417–430 (1967)
-
Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. B 237, 37–72 (1952)
-
Zakharov, V.E.: Collapse of Langmuir waves. Sov. Phys. JETP 35, 908–914 (1972)
-
Hasegawa, A.: Generation of a train of soliton pulses by induced modulational instability in optical fibers. Opt. Lett. 9(7), 288–290 (1984)
-
Tai, K., Hasegawa, A., Tomita, A.: Observation of modulational instability in optical fibers. Phys. Rev. Lett. 56(2), 135–138 (1986)
-
Agrawal, G.P.: Modulation instability induced by cross-phase modulation. Phys. Rev. Lett. 59(8), 880–883 (1987)
-
Akhmediev, N., Korneev, V.I.: Modulation instability and periodic solutions of the nonlinear Schrödinger equation. Theor. Math. Phys. 69(2), 189–194 (1986)
-
Islas, A., Schober, C.M.: Rogue waves, dissipation, and downshifting. Phys. D 240(12), 1041–1054 (2011)
-
Onorato, M., Proment, D.: Approximate rogue wave solutions of the forced and damped nonlinear Schrödinger equation for water waves. Phys. Lett. A 376(45), 3057–3059 (2012)
-
Schober, C.M., Strawn, M.: The effects of wind and nonlinear damping on rogue waves and permanent downshift. Phys. D 313(1), 81–98 (2015)
-
Kharif, C., Pelinovsky, D.E., Slunyaev, A.: Rogue Waves in the Ocean. Springer, Berlin (2009)
-
Solli, D.R., Ropers, C., Koonath, P., Jalali, B.: Optical rogue waves. Nature 450(7172), 1054–1057 (2007)
-
Bludov, Y.V., Konotop, V.V., Akhmediev, N.: Matter rogue waves. Phys. Rev. A 80(3), 033610 (2009)
-
Bludov, Y.V., Konotop, V.V., Akhmediev, N.: Rogue waves as spatial energy concentrators in arrays of nonlinear waveguides. Opt. Lett. 34(19), 3015–3017 (2009)
-
Akhmediev, N., Ankiewicz, A., Taki, M.: Waves that appear from nowhere and disappear without a trace. Phys. Lett. A 373, 675–678 (2009)
-
Peregrine, D.H.: Water waves, nonlinear Schrödinger equations and their solutions. J. Aust. Math. Soc. 25(1), 16–43 (1983)
-
Cao, C.W.: Nonlinearization of the Lax system for AKNS hierarchy. Sci. China Ser. A 33(5), 528–536 (1990)
-
Wen, X.Y., Meng, X.H., Xu, X.G., Wang, J.T.: N-fold Darboux transformation and explicit solutions in terms of the determinant for the three-field Blaszak–Marciniak lattice. Appl. Math. Lett. 26(11), 1076–1081 (2013)
-
Zhaqilao, Sirendaoreji: N-soliton solutions of the KdV6 and mKdV6 equations (Article). J. Math. Phys. 51(11), 073516 (2010)
-
Zhaqilao: Darboux transformation and N-soliton solutions for a more general set of coupled integrable dispersionless system. Commun. Nonlinear Sci. Numer. Simul. 16(10), 3949–3955 (2011)
-
Zhaqilao, Qiao, Z.: Darboux transformation and explicit solutions for two integrable equations. Math. Anal. Appl. 380(2), 794–806 (2011)
-
Zhao, D., Zhaqilao: On two new types of modified short pulse equation. Nonlinear Dyn. 100(1), 615–627 (2020)
-
Chen, J.B., Pelinovsky, D.E.: Rogue periodic waves of the modified KdV equation. Nonlinearity 31(5), 1955–1980 (2018)
-
Chen, J.B., Pelinovsky, D.E.: Rogue periodic waves of the focusing nonlinear Schrödinger equation. Proc. R. Soc. A 474(2210), 20170814 (2018)
-
Chen, J.B., Pelinovsky, D.E., White, R.E.: Rogue waves on the double-periodic background in the focusing nonlinear Schrödinger equation. Phys. Rev. E 100(5), 0522199 (2019)
-
Chen, J.B., Pelinovsky, D.E., White, R.E.: Periodic standing waves in the focusing nonlinear Schrödinger equation: Rogue waves and modulation instability. Physica D. 405, 132378 (2020)
-
Wang, Z.J., Zhaqilao: Rogue wave solutions for the generalized fifth-order nonlinear Schrödinger equation on the periodic background. Wave Motion 108, 102839 (2021)
-
Yue, Y.F., Huang, L.L., Chen, Y.: Modulation instability, rogue waves and spectral analysis for the sixth-order nonlinear Schrödinger equation. Commun. Nonlinear Sci. Numer. Simul. 89, 105284 (2020)
-
Zhang, H.Q., Chen, F.: Rogue waves for the fourth-order nonlinear Schrödinger equation on the periodic background. Chaos 31(2), 203129 (2021)
-
Peng, W.Q., Tian, S.F., Wang, X.B., Zhang, T.T.: Characteristics of rogue waves on a periodic background for the Hirota equation. Wave Motion 93, 102454 (2020)
-
Li, R.M., Geng, X.G.: Rogue periodic waves of the sine-Gordon equation. Appl. Math. Lett. 102, 106147 (2020)
-
Zhang, H.Q., Gao, X., Pei, Z.J., Chen, F.: Rogue periodic waves in the fifth-order Ito equation. Appl. Math. Lett. 107, 106464 (2020)
-
Sun, W.R., Wang, L.: Vector rogue waves, rogue wave-to-soliton conversions and modulation instability of the higher-order matrix nonlinear Schrödinger equation. Eur. Phys. J. Plus. 133(12), 495 (2018)
-
Kedziora, D.J., Ankiewicz, A., Chowdury, A., Akhmediev, N.: Integrable equations of the infinite nonlinear schrödinger equation hierarchy with time variable coefficients. Chaos 25, 103114 (2015)
-
Ankiewicz, A., Kedziora, D.J., Chowdury, A., Bandelow, U., Akhmediev, N.: Infinite hierarchy of nonlinear Schrödinger equations and their solutions. Phys. Rev. E 93, 012206 (2016)
-
Anastasia, D., Iain, F., Spyridoula, S.: Non-commutative NLS-type hierarchies: dressing & solutions. Nucl. Phys. B 941(4), 376–400 (2019)
-
Hirota, R.: Exact envelope-soliton solutions of a nonlinear wave equation. J. Math. Phys. 14, 805–809 (1973)
-
Lakshmanan, M., Porsezian, K., Daniel, M.: Effect of discreteness on the continuum limit of the Heisenberg spin chain. Phys. Lett. A 133, 483–488 (1988)
-
Chowdury, A., Kedziora, D.J., Ankiewicz, A., Akhmediev, N.: Soliton solutions of an integrable nonlinear Schrödinger equation with quintic terms. Phys. Rev. E 90, 032922 (2014)
-
Akhmediev, N., Ankiewicz, A.: Solitons, Nonlinear Pulses and Beams. Chapman & Hall, London (1997)
-
Ankiewicz, A., Soto-Crespo, J.M., Akhmediev, N.: Rogue waves and rational solutions of the Hirota equation. Phys. Rev. E 81, 046602 (2010)
-
Cao, C.W., Wu, Y.T., Geng, X.G.: Relation between the Kadomtsev–Petviashvili equation and the confocal involutive system. J. Math. Phys. 40(8), 3948–3970 (1999)
-
Zhou, R.G.: Nonlinearizations of spectral problems of the nonlinear Schrödinger equation and the real-valued modified Korteweg–de Vries equation. J. Math. Phys. 48(1), 013510 (2007)
-
Gu, C.H., Hu, H.S., Zhou, Z.X.: Darboux Transformation in Integrable Systems: Theory and Their Applications To Geometry. Springer, Dordrecht (2005)
-
Kharif, C., Touboul, J.: Under which conditions the Benjamin–Feir instability may spawn an extreme wave event: a fully nonlinear approach. Eur. Phys. J. Special Topics 185, 159–168 (2010)
-
Kharif, C., Kraenkel, R.A., Manna, M.A., Thomas, R.: The modulational instability in deep water under the action of wind and dissipation. J. Fluid Mech. 664, 138–149 (2010)
Acknowledgements
This work was supported by the National Natural Science Foundation of China (Grant Nos. 11861050, 11261037), the Natural Science Foundation of Inner Mongolia Autonomous Region, China (Grant No. 2020LH01010) and the Inner Mongolia Normal University Graduate Students' Research and Innovation Fund (Grant No. CXJJS21119).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
About this article
Cite this article
Shi, W., Zhaqilao Modulation instability and rogue waves for the sixth-order nonlinear Schrödinger equation with variable coefficients on a periodic background. Nonlinear Dyn 109, 2979–2995 (2022). https://doi.org/10.1007/s11071-022-07538-9
-
Received:
-
Accepted:
-
Published:
-
Issue Date:
-
DOI : https://doi.org/10.1007/s11071-022-07538-9
Keywords
- Rogue wave on a periodic background
- Sixth-order focusing nonlinear Schrödinger equation
- Variable coefficient
- Modulation instability
piersonlitsee1990.blogspot.com
Source: https://link.springer.com/article/10.1007/s11071-022-07538-9
0 Response to "Modulation Instability Continuous Wave Nls Dark"
Post a Comment